THE DETERMINATION OF THE POSITIONING ANGLES IN SHARPENING ROMASCON CUTTERS WITH THE TOOTH AXIS PARALLEL TO THE SHANK OF THE CUTTER AXIS

M. Severincu, C. Dumitraş, Universitatea Tehnică ,,Gh. Asachi" Iaşi

In order to obtain the geometric parameters $\varphi_{\mathrm{f}}, \varphi^{\prime}, \alpha_{\mathrm{xf}}, \alpha_{\mathrm{yf}}, \gamma_{\mathrm{xf}}, \gamma_{\mathrm{yf}}$ on the edges that are sharpened and re-sharpened, which correspond to work position it is necessary to rotate the tooth with the $\phi_{1}, \phi_{2}, \phi_{3}$, angles in sharpening the clearence surfaces, the rake surface and secondary clearence surfaces, and to move the grinding wheel along generating line of revolved surfaces inclined by $\mathbf{K}_{\mathbf{a}}$, $\boldsymbol{\gamma}_{\mathrm{a}}$ and \mathbf{K}_{sa}.

The revolution surface on which the sharpening operation is carried out may generally be considered a cone (figure 1).

Figure 1
By selecting a system of coordinates $\mathbf{S x y z}$, where $\mathbf{S x}$ coincides with the forward tool movement, and $\mathbf{S z}$ is tangential to the trajectory described by one point on the tool, and $\mathbf{S y}$ axis completes the right trihedron and coincides with the tool rotation axis, the resulting cone equation which defines the sharpening will be:

$$
\begin{equation*}
\frac{X^{2}+Z^{2}}{a^{2}}=\frac{Y^{2}}{c^{2}} \tag{1}
\end{equation*}
$$

The a and c parameters are determined according to the angle already known or supposedly known, which is \mathbf{K}_{a} or $\mathbf{K}_{\text {sa }}$ from the cone base in case of sharpening of clearence surfaces, secondary and auxiliary and finishing surface, and the φ_{a}
semiangle from the cone vertex in case of rake surfaces sharpening, if the cone generating line is equal to the unit.

In order to determine the tooth positioning angles around its own axis in sharpening ($\phi_{1}, \phi_{2}, \phi_{3}$) and the tool positioning in relation to grinding wheel $\left(\mathbf{K}_{\mathrm{a}}\right)$ the following algorithm is observed:
a) knowing that the sharpened surface shape remains unchanged following sharpening, the equation of the tangential plane to the surface is accordingly elaborated for \mathbf{M} point, in sharpening position, according to the positioning parameters in sharpening equation which is maintained for work as well;
b) the equation of the tangential plane to the sharpened surface is expressed for the same \mathbf{M} point (in the same reference system), but this time according to the geometric parameters which the tool must finally following sharpening ;
c) the condition is imposed that the 2 equations of the tangential planes in the \mathbf{M} point represent the same plane, that is the coefficients of the 2 equations should be proportional

In case of face milling cutters whose tooth axis is parallel to the shank of tool axis (figure 2), the flanks are sharpened following a cone which has the $\mathbf{K}_{\mathbf{a}}$ base angle, and the tooth is rotated with ϕ_{1} angle; these angles are to be determined so as to obtain the necessary tool geometric parameters following sharpening.

According to figure 1 in this case, it results:

$$
\begin{equation*}
a=\cos K_{a} ; c=\sin K_{a} \tag{2}
\end{equation*}
$$

which added to the cone equation gives:

$$
\begin{equation*}
X^{2}+Z^{2}=\operatorname{ctg}^{2} K_{a} \cdot Y^{2} \tag{3}
\end{equation*}
$$

The $\mathbf{M}_{\mathbf{1}}$ point located on the sharpening position of the flanks, in the reference system $\mathbf{S x y z}$, has the following coordinates:

$$
\begin{align*}
& X=\frac{D_{1}}{2}+r_{m} \cdot \cos \left(\varphi_{1}+\varphi_{m}\right) \tag{4}\\
& Z=r_{m} \cdot \sin \left(\varphi_{1}+\varphi_{m}\right)
\end{align*}
$$

The \mathbf{Y} coordinate of the \mathbf{M}_{1} point is determined as follows:

Figure 2

$$
\begin{align*}
& O M_{1}=O A=O^{\prime} A^{\prime} \\
& O M_{1}=\sqrt{X_{M 1}^{2}+Z_{M 1}^{2}} \\
& S O^{\prime}=O^{\prime} A^{\prime} \operatorname{tg} K_{a}=\operatorname{tg} K_{a} \sqrt{\frac{D_{1}}{4}+D_{1} r_{m} \cos \left(\varphi_{1}+\varphi_{m}\right)+r_{m}^{2}} \tag{5}
\end{align*}
$$

Accordingly the coordinates of the $\mathbf{M}_{\mathbf{1}}$ point are:

$$
\begin{aligned}
& X=\frac{D_{1}}{2}+r_{m} \cdot \cos \left(\varphi_{1}+\varphi_{m}\right) \\
& Y=\operatorname{tg} K_{a} \sqrt{\frac{D_{1}}{4}+D_{1} r_{m} \cos \left(\varphi_{1}+\varphi_{m}\right)+r_{m}^{2}} \\
& Z=r_{m} \sin \left(\varphi_{1}+\varphi_{m}\right)
\end{aligned}
$$

In as much as the rotation from sharpening position into work is centred around the tooth axis (figure 2) and as the shape and the flank equation in the new reference system $\mathbf{S x}_{1} \mathbf{y}_{1} \mathbf{z}_{\mathbf{1}}$ are the same as in the previous $\mathbf{S x y z}$ system, then:

$$
\begin{equation*}
X_{1}^{2}+Z_{1}^{2}=\operatorname{ctg}^{2} K_{a} \cdot Y_{1} \tag{7}
\end{equation*}
$$

The equation of the tangential plane to the \mathbf{M} point, written by multiplying relation (3) is:

$$
\begin{equation*}
X \cdot X_{1}+Z \cdot Z_{1}=\operatorname{ctg}^{2} K_{a} \cdot Y_{1} \tag{8}
\end{equation*}
$$

By replacing relation (6) in relation (8) results:

$$
\begin{align*}
& {\left[\frac{D_{1}}{2}+r_{m} \cos \left(\varphi_{1}+\varphi_{m}\right)\right] X_{1}-\operatorname{ctg} K_{a} Y_{1}} \\
& \sqrt{\frac{D_{1}^{2}}{4}+r_{m} \cos \left(\varphi_{1}+\varphi_{m}\right)+r_{m}^{2}}+r_{m} \sin \left(\varphi_{1}+\varphi_{m}\right) Z_{1}=0
\end{align*}
$$

Relation (9) represents the equation of the tangential plane to the flank in \mathbf{M} point, elaborated in conformity with the positioning parameters in the $\mathbf{S x}_{1} \mathbf{y}_{\mathbf{1}} \mathbf{z}_{\mathbf{1}}$ system in sharpening.

The expression of the tangential plane to the flank in the \mathbf{M} point, rendered in accordance with the geometric parameters of cutter is:

$$
\begin{equation*}
X^{\prime} \cdot \operatorname{ctg} \alpha_{x f}-Y^{\prime} \cdot \operatorname{ctg} \alpha_{y f}-Z^{\prime}+A=0 \tag{10}
\end{equation*}
$$

where: A is the value pertaining to the translation of the system of coordinates.

The $\mathbf{S x}_{1} \mathbf{y}_{\mathbf{1}} \mathbf{z}_{\mathbf{1}}$ system is rotated with the $\varphi_{1}+\boldsymbol{\theta}_{\mathrm{m}}$ angle in relation to the $\mathbf{O} \mathbf{x}^{\prime} \mathbf{y}^{\prime} \mathbf{z}^{\prime}$ system, thereforethe connection between these two systems is given by transformation:

$$
\begin{align*}
& X_{1}=X^{\prime} \cos \left(\varphi_{1}+\theta_{m}\right)-Z^{\prime} \sin \left(\varphi_{1}+\theta_{m}\right) \\
& Y_{1}=Y^{\prime} \tag{11}\\
& Z_{1}=X^{\prime} \sin \left(\varphi_{1}+\theta_{m}\right)+Z^{\prime} \cos \left(\varphi_{1}+\theta_{m}\right)
\end{align*}
$$

By replacing relation (11) in relation (9) the equation of the tangential plane to the flank in the Ox'y'z' system is:

$$
\begin{align*}
& X^{\prime}\left[\frac{D_{1}}{2} \cos \left(\varphi_{1}+\theta_{m}\right)+r_{m} \cos \left(\varphi_{m}-\theta_{m}\right)\right]-Y^{\prime} \operatorname{ctg} K_{a} . \\
& \sqrt{\frac{D_{1}^{2}}{4}+D_{1} r_{m} \cos \left(\varphi_{1}+\varphi_{m}\right)+r_{m}^{2}+Z^{\prime}} \\
& {\left[r_{m} \sin \left(\varphi_{m}-\theta_{m}\right)-\frac{D_{1}}{2} \sin \left(\varphi_{1}+\varphi_{m}\right)\right]=0} \tag{12}
\end{align*}
$$

Imposing the condition that equations (10) and (12) represent the same plane, the result will be:

$$
\begin{align*}
& \frac{\left[\frac{D_{1}}{2} \cos \left(\varphi_{1}+\theta_{m}\right)+r_{m} \cos \left(\varphi_{m}-\theta_{m}\right)\right]}{\operatorname{ctg} \alpha_{x f}}= \\
& \frac{\operatorname{ctg} K_{a} \sqrt{\frac{D_{1}^{2}}{4}+D_{1} r_{m} \cos \left(\varphi_{1}+\varphi_{m}\right)+r_{m}^{2}}}{\operatorname{ctg} \alpha_{y f}}= \\
& \frac{\left[r_{m} \sin \left(\varphi_{m}-\theta_{m}\right)-\frac{D_{1}}{2} \sin \left(\varphi_{1}+\varphi_{m}\right)\right]}{-1} \tag{13}
\end{align*}
$$

From the above equation if we consider the first and third member and after we are grouping the terms after $\mathbf{D}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{m}}$ we obtain:

$$
\begin{equation*}
\sin \left(\varphi_{1}+\theta_{m}-\alpha_{x f}\right)=\frac{2 r_{m}}{D_{1}} \sin \left(\varphi_{m}-\theta_{m}+\alpha_{x f}\right) \tag{14}
\end{equation*}
$$

From the relation (14) emerges the needed dependence, which is:

$$
\begin{equation*}
\varphi_{1}=\alpha_{x f}-\theta_{m}+\arcsin \left(\frac{2 r_{m}}{D_{1}} \sin \left(\varphi_{m}-\theta_{m}+\alpha_{x f}\right)\right) \tag{15}
\end{equation*}
$$

From the above equation it is determined the φ_{1} positioning angle around tooth axis in rotation, according to the angle of clearence of the cutter and the elements taht determine the position of point on edge. Also, one can determine the inverse relation of dependence of $\boldsymbol{\alpha}_{\mathrm{xf}}$ angle of clearence according to the φ_{1} rotation angle.
$\left.\alpha_{x f}=\varphi_{1}+\theta_{m}-\arcsin \frac{r_{m} \sin \left(\varphi_{1}+\varphi_{m}\right)}{\sqrt{\frac{D_{1}^{2}}{4}+D_{1} r_{m} \cos \left(\varphi_{1}+\varphi_{m}\right)+r_{m}^{2}}}\right]$

Considering the first and the second ratios from equation (12) it is obain succesively:

$$
\begin{equation*}
\operatorname{tg} K_{a}=\frac{\operatorname{tg} \alpha_{x f} \sqrt{\frac{D_{1}^{2}}{4}+D_{1} r_{m} \cos \left(\varphi_{1}+\varphi_{m}\right)+r_{m}^{2}}}{\operatorname{tg} \alpha_{x f}\left[\frac{D_{1}}{2} \cos \left(\varphi_{1}+\varphi_{m}\right)+r_{m} \cos \left(\varphi_{1}+\varphi_{m}\right)\right]} \tag{17}
\end{equation*}
$$

respectively:
$\operatorname{tg} \alpha_{y f}=\frac{\operatorname{tg} K_{a} \operatorname{tg} \alpha_{x f}\left[\frac{D_{1}}{2} \cos \left(\varphi_{1}+\theta_{m}\right)+r_{m} \cos \left(\varphi_{m}-\theta_{m}\right)\right]}{\sqrt{\frac{D_{1}^{2}}{4}+D_{1} r_{m} \cos \left(\varphi_{1}+\theta_{m}\right)+r_{m}^{2}}}$

Relation (17) represents the needed dependence of $\mathbf{K}_{\mathbf{a}}$ angle in reciprocal positioning between tool and grinding wheel.

Relation (18) describes the variation of the α_{yf} longitudinal angle of clearence of cutter according to $\mathbf{K}_{\mathrm{a}}, \boldsymbol{\alpha}_{\mathbf{x} \boldsymbol{f}}, \varphi_{1}$ and the other elements.

For the operating edge which is perpendicular to both the tooth and cutter axes, the $\mathbf{K}_{\mathbf{a}}=\mathbf{0}^{\circ}$, meaning that on this edge the $\boldsymbol{\alpha}_{\mathbf{y f}}$ angle is zero in accordance with the relation (18), for any φ_{1} angle of the tooth rotation around its own axis. In order to obtain a positive value for $\boldsymbol{\alpha}_{\mathrm{yf}}$ on this edge the flanks on finishing edge are sharpened starting from sharpening position of the rake surfaces, according to the scheme from figure 1 .

When the M point is situated on the tooth axis it results that $\mathbf{r}_{\mathbf{m}}=\mathbf{0}$ and $\boldsymbol{\theta}_{\mathrm{m}}=\mathbf{0}^{\circ}$ that is the $\boldsymbol{\alpha}_{\mathbf{x f}}$ angle of clearence is equal to the φ_{1} angle which signifies the tooth rotation angle in sharpening such as it results from equation (16).

The rake surfaces (figure 3) are sharpened following a cone which has the γ_{a} as semiangle of cone edge, and the tooth is rotated with φ_{2} angle, these angles are to be determined in such a way so as to have the γ_{xf} and γ_{yf} cutter parameters following sharpening.

Figure 3

According to the figure 1 it can be deduced that :

$$
\begin{equation*}
a=\sin \gamma_{a} ; c=\cos \gamma_{a} \tag{19}
\end{equation*}
$$

which once introduced in the cone equations gives:

$$
\begin{equation*}
X^{2}+Z^{2}=\operatorname{tg}^{2} \gamma_{a} \cdot Y^{2} \tag{20}
\end{equation*}
$$

The $\mathbf{M}_{\mathbf{2}}$ point situated on sharpening position of the rake surfaces has in the Sxyz system of reference the following coordinates:

$$
\begin{align*}
& X=\frac{D_{1}}{2}+r_{m} \cos \left(\varphi_{2}-\varphi_{m}\right) \\
& Y=\operatorname{ctg} \gamma_{a} \sqrt{\frac{D_{1}^{2}}{4}+D_{1} r_{m} \cos \left(\varphi_{2}-\varphi_{m}\right)+r_{m}^{2}} \tag{21}\\
& Z=-r_{m} \sin \left(\varphi_{2}-\varphi_{m}\right)
\end{align*}
$$

In as much as the rotation from sharpening position to wotk position is centered around tooth axis and as the form and the rake surface equation in new $\mathbf{S x}_{2} \mathbf{y}_{\mathbf{2}} \mathbf{z}_{\mathbf{2}}$ system is the same as in the $\mathbf{S x y z}$ system, namely:

$$
\begin{equation*}
X_{2}^{2}+Z_{2}^{2}=\operatorname{tg}^{2} \gamma_{a} \cdot Y_{2}^{2} \tag{22}
\end{equation*}
$$

The equation of the tangential plane to the rake surface is obtained by doubling the relation (22):

$$
\begin{equation*}
X_{2} \cdot X_{2}+Z_{2} \cdot Z_{2}=\operatorname{tg}^{2} \gamma_{a} \cdot Y_{2} \cdot Y_{2} \tag{23}
\end{equation*}
$$

By turning relation (21) into (23) it results that:

$$
\begin{align*}
& X_{2}\left[\frac{D_{1}}{2}+r_{m} \cos \left(\varphi_{2}-\varphi_{m}\right)\right]-Y_{2} \operatorname{tg} \gamma_{a} \\
& \sqrt{\frac{D_{1}^{2}}{4}+D_{1} r_{m} \cos \left(\varphi_{2}-\varphi_{m}\right)+r_{m}^{2}}-Z_{2} r_{m} \tag{24}\\
& \sin \left(\varphi_{2}-\varphi_{m}\right)=0
\end{align*}
$$

The above relation represents the equation of the tangential plane to the rake surface in \mathbf{M}_{2} point expressed in relation to the positioning parameters of $\mathbf{S} \mathbf{x}_{\mathbf{2}} \mathbf{y}_{\mathbf{2}} \mathbf{z}_{\mathbf{2}}$ system in sharpening.

The equation of the tangential plane to the rake surface into the \mathbf{M} point, expressed in relation to the cutter's geometric parameters of $\mathbf{M x}^{\prime} \mathbf{y}^{\prime} \mathbf{z}^{\prime}$ system is obtained from the relation (10) where $\beta=0^{\circ}$ which means:

$$
\begin{equation*}
x^{\prime} \cdot \operatorname{tg} \gamma_{x f}-y^{\prime} \cdot \operatorname{tg} \gamma_{y f}-z^{\prime}+A=0 \tag{25}
\end{equation*}
$$

The $\mathbf{S x}_{2} \mathbf{y}_{2} \mathbf{z}_{\mathbf{2}}$ system is rotated around $\mathbf{S \mathbf { y } _ { 2 }}$ axis with the $\left[-\left(\varphi_{2}-\theta_{m}\right)\right]$ and the connection between the 2 systems is given by the transformation:

$$
\begin{align*}
& X_{2}=x^{\prime} \cos \left(\varphi_{2}-\theta_{m}\right)+z^{\prime} \sin \left(\varphi_{2}-\theta_{m}\right) \\
& Y_{2}=y^{\prime} \tag{26}\\
& Z_{2}=-x^{\prime} \sin \left(\varphi_{2}-\theta_{m}\right)+z^{\prime} \cos \left(\varphi_{2}-\theta_{m}\right)
\end{align*}
$$

By turning transformation (26) into relation (24) the result is:

$$
\begin{align*}
& x^{\prime}\left[\frac{D_{1}}{2} \cos \left(\varphi_{2}-\theta_{m}\right)+r_{m} \cos \left(\varphi_{m}-\theta_{m}\right)\right]- \\
& y^{\prime} \operatorname{tg} \gamma_{a} \sqrt{\frac{D_{1}^{2}}{4}+D_{1} r_{m} \cos \left(\varphi_{2}-\theta_{m}\right)+r_{m}^{2}}+ \tag{27}\\
& z^{\prime}\left[\frac{D_{1}^{2}}{2} \sin \left(\varphi_{2}-\theta_{m}\right)+r_{m} \sin \left(\varphi_{m}-\theta_{m}\right)\right]
\end{align*}
$$

Having for equations (25) and (27) the same plane as imposed condition, then:

$$
\begin{align*}
& \frac{\frac{D_{1}}{2} \cos \left(\varphi_{2}-\theta_{m}\right)+r_{m} \cos \left(\varphi_{m}-\theta_{m}\right)}{\operatorname{tg} \gamma_{x f}}= \\
& \frac{\operatorname{tg} \gamma_{a} \sqrt{\frac{D_{1}{ }^{2}}{4}+D_{1} r_{m} \cos \left(\varphi_{2}-\theta_{m}\right)+r_{m}^{2}}}{\operatorname{tg} \gamma_{y f}}= \tag{28}\\
& \frac{\frac{D_{1}}{2} \sin \left(\varphi_{2}-\theta_{m}\right)+r_{m} \sin \left(\varphi_{m}-\theta_{m}\right)}{-1}
\end{align*}
$$

After grouping and re-grouping the terms of the above equation on needed dependence:

$$
\begin{align*}
& \varphi_{2}=180^{\circ}+\gamma_{x f}+\theta_{m}- \\
& \operatorname{arcos}\left[\frac{2 r_{m}}{D_{1}} \cos \left[\varphi_{m}-\theta_{m}-\gamma_{x f}\right]\right] \tag{29}
\end{align*}
$$

By proceeding to verify graphically the relation above, it has been concluded that it is necessary for the solution to introduce the cosine function period, that is the angle of 180°.

By analysing the above relation it can be concluded that the φ_{2} angle which is necessary to position in sharpening the rake surface, depends both on the γ_{xf} cutter rake angle and on the parameters which determine the point position on the edge, respectively on cutter.

References:

1.Belous V. ş.a. SISTEMUL ROMASCON- de scule aşchietoare cu ascuţire continuă-detalonate după arce de cerc. Ed. Performantica, Iaşi, 1999, ISBN 973-98997-7-3.
2.Belous V. Sinteza sculelor aşchietoare. Ed. Junimea, Iaşi, 1980.
3.Severincu M., Croitoru C. Proiectarea sculelor aşchietoare. Ed. Universităţii Tehnice ,, Gh. Asachi", Iaşi, 2000.
4.Severincu M. Cercetări asupra optimizării constructive şi geometrice a frezelor cu ascuţire continuă, cu dinţi demontabili armaţi, cu plăcuţe dure fixate mecanic. Teză de doctorat, Institutul Politehnic Iaşi, 1985.

