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INTRODUCTION

The exact solutions of a relativistic fluid
play a more important role than those obtained
through approximation scheme and numerical ap-
proximation. Moreover, one uses various symme-
tries to get physical viable information from the
complicated structure of the field equations in Ein-
stein's theory. Solutions of the Einstein field equa-
tions for a perfect fluid with or without a radiation
field have been studied by several authors [1]-[9].
Owing to the nonlinearity of the field equations, it is
very difficult to obtain exact solutions.

In the present paper, we present a confor-
mally flat metric representing the gravitational field
of a spherically symmetric distribution of a radiat-
ing perfect fluid. A particular case of the solution is
discussed and corresponding expressions for fluid
energy density, pressure, radiation flux and radia-
tion energy density have been derived.

The solutions of the equations of the rela-
tivistic perfect fluids are analyzed as relativistic
models of a radiating balanced sphere. In comoving
coordinates in which we choose the units so that
c=1, the metric of a conformally flat space-time
for spherically symmetric distribution can be writ-
ten as [8]

s? = A?(t,r)(dt® —dr? -
where A= A(t,r),
d2? =d@* +sin*de?,
@ and @ labelling points on the unit sphere.

The energy-momentum tensor of a relativistic ther-
modynamical perfect fluid in the presence of a radi-
ation field [10], [11] is the sum of the fluid energy-
momentum tensor and the energy-momentum tensor
of the radiation field.

T/ =wu U’ —ph? +Qf @, =03, (2
with

Qf =Qu,U” +q,u” +u,0° —%th, @3
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where h? =g? —u_ u” is the spatial projector,
u,=(A0,0,0) is the fluid velocity, Q is the
density = of the radiation energy and
q, =(0,9A,0,0) is the radiative flux.

The Einstein field equations [12]
R’ —% RS? =«T”, (4)

(x being Einstein’s gravitational constant) which
connect the Ricci tensor Rf with the energy-

momentum tensor Tf given by (2), become:
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where W =w+Q, p = p+§Q the total ener-
gy and the total pressure. The conservation identi-

ties T/, =0 become

Wt+3%(w+ p)=o-(Q—aT4), 9)

+%(p+w)=o-Aq. (10)
The equations of radiation field

a l

with F, = 0'( . (Q aT4)).Ja, can be written as

Q + A‘Q+qr+2[ % %]q=—aA(Q aT*)
1)
qt+4ﬁq+ (Q +4Ar )=—0'Aq. (12)

The equations (9)-(12) g|ve
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pf+%(p*+w*)+qt+%q=0, (14)

1.CONFORMALLY-FLAT
SOLUTIONS

The elimination of p~ from (6) and (7) gives

i_z(ﬁf_zﬁ:o,
A A 3 A

From here and (8) we obtain the system

A) Lo [A)_xA
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The compatibility condition is

B

K A '
so that EEq =-2F (t) then

% =—2rF (1),
whose solution is
At.r)=(F@)r* +6@)", (16)
where F(t) and G(t) are arbitrary functions.
A relation between the functions F(t) and
G(t) can be obtained from the condition that on the
hypersurface r=r, the total pressure

p*(t,rs)=0. In this condition, from the equation
(6), we obtain

— 2[F )2+ G(t)I "(Or2+G" (t)]+
+3[F (2 +c ()=
= aF(O)[F ()2 —26(t)]

(17)

Many solutions have been found by specifying a
functional relation between some metric functions.
We shall present models of radiating sphere by con-

sidering the particular case G(t)= kF(t). In this
case, from the equation (17), we obtain for F

(2 +kF 2R @F @)+ 3(F () ]=
= 4(r2 - 2k)F2(2).
This gives

1
Altr)= r +kF(t) r2 +k

(Cle"’t +C,e™
(18)
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with a? =%, where C, and C, are arbi-
+k

trary constants.

The fluid energy density, pressure and radi-
ation flux can then be computed from (5)-(8):
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If we substitute  A(t,r) given by (18) in (11})-
(14), we obtain

w; P i o2 (W* +p )+
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In virtue of the conservation identities, the functions
w', p’, and q, given by (19)-(21), verify the
equations (22) and (23}). With q given by (21), the
equation (25) can be written



Conformally-flat solutions for a radiative relativistic sphere

[(%Y] 48 el

26)
where
24a°
B(t)— - X
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The general solution of the equation (26) is

Q(t,r)=%B(t)(r2+k)z—C(t)(r2+k)4x

y 1 n r2 +12r2+3k
2k®  ri+k 4 (r2 +k)z
for k #0, and

Qtr) =3 B + < COr +Q, ()",
for k =0.
The function Qo(t) can be determined
from the condition
Qt.r.)=Q.(t).

For example, if k=0, C, =1, C, =0, then

Q(t.r)=

If we choose in (16) F(t) a constant (F(t)= 1),
one finds

r —(t by’
with b an arbitrary constant, which corresponds to

a solution of the Einstein's vacuum equations [6].
The equation (24) gives the relation between the

density of radiation energy Q(t,r) and the tem-
perature T(t,r).
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