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1. THEORETICAL 

CONSIDERATIONS 
 

The formation of waviness on the grinding 

wheel and workpiece circumferencas is usually 

associated which may appear during grinding. These 

vibrations can be divided into the following  three 

groups: 

 Forced vibration of the machine tool structure or 

its various parts caused by the action of excitation 

forces. The magnitude of the periodic force and its 

change with time may not be known, the presence of 

force can be identified by the frequency wich 

normally coincides with the speed of some rotating 

or reciprocating parts in the system. The most 

common source of forced vibration in grinding 

process is usually connected with the grinding wheel 

unbalance [1], [4], and the number of waves formed 

on the workpiece periphery is proportional to the 

rotational speed of the wheel spindle. 

 “Passive” vibrations transmitted throught 

foundations from other machines or resulting from 

changes in the workpiece material, non-uniform 

wear, etc. Vibrations of this type can also be 

classified as forced. 

 Self-excited vibration generated by the internal 

forces formed by the cutting action, without the 

presence of any external periodic forces.  

Under conditions of chatter certain high 

frequency waves may be observed on the wheel 

circumference, and as a result of their formation the 

state of chatter will continue to develop. Although 

the analysis of self-excited vibrations has been 

carried out in a number of investigations [5], [12], 

only a minority of the papers published on this 

subject have considered the generation of surface 

waves formed on the grinding wheel periphery. 

In Fig.1, the relationship between wheel 

waviness, workpiece roughness and workpiece 

vibrations are shown as functions of grinding time.  

 

For different times of machining, the 

amplitude of wheel waviness and workpiece 

roughness are not proportional to the amplitude of 

workpiece vibrations. 

The basic equations of motion are derived on 

the assumption that the amplitude of vibration in 

radial grinding forces. The validity of this  

 

assumption, will depend largely on the 

characteristics of the G-W-M (Grinding Wheel- 

Workpiece-Grinding Machine) system and 

certain dynamic factors associated with the cutting 

action itself. Amongst those dynamic factors, the 

wheel contact stiffness [12],[13] and the coefficient 

of grinding wheel wear [12] play a very significant 

part. 

The wheel contact stiffness can be defined as 

a measure of elastic rigidity of the contact zone 

formed by the wheel and the workpiece. That by 

considering the wheel contact stiffness, the 

frequency of chatter vibrations can be shown to be 

equal to the natural frequencyof the G-W-M system.  

From the same investigations it will also 

appear that the wheel contact stiffness varies with a 

variation in the radial force (F), and the relationship 

between the two can be represented by a typical 

curve. In analysing the basic equations of motion, 

some of the authors assumed that the amplitude of 

chatter vibration during grinding remains relatively 

small.  
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Figure 1. Relationship  between  workpiece  

vibrations  and  surface   irregularities  as  a  function  

of  grinding  time 
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For such conditions the variations in cutting 

forces will also be small, and hence the coefficients 

K3, will remain practically constant without 

affecting significantly the linearity of the system 

On the basis of the above assumption the 

equation derived for chatter vibration [12] would be 

of the form, 

A (t) = p (q)t                                      (1) 

Where t = grinding time, 

A (t) = amplitude of vibration at time t, 

p = f (k3), and  

q = f (k3, kv) 

Equation (1) suggest an infinite rise in the 

amplitude of chatter vibration; in reality, such 

infinite rise cannot be confirmed experimentally and 

instead a finite amplitude is usually observed. The 

presence of a finite amplitude can be explained by 

the condition of equilibrium between the internal 

sources of energy of self-excitation and the damping 

of the system. The degree of the final build-up in the 

amplitude of chatter depends upon the nature of non-

linearity of the system under investigation [14]. 

To the changes in the amplitude of chatter 

vibrations, it has also been established [4], [9], [11], 

[13], [15] that with increase in grinding time, the 

frequency of chatter vibrations decreases as their 

amplitude increases. 

As was shown earlier [16] if x and α 

represent the amplitude of vibrations and C the 

damping coefficient of the system then the energy of 

excitation We can be expressed as follows,  

 

22

e x
2

C
W            (2) 

 

It from equation (2) that at any given level 

of excitation energy, an increase in the amplitude 

should decrease the frequency and vive versa.  

As explain de earlier an increase in the 

amplitude causes a decrease in the chatter frequency 

due to the reduction in the natural frequency of the 

system. This decease in frequency will, in turn, tend 

to increase the amplitude of vibrations.  

The change in the amplitude and frequency 

of chatter vibrations are mutually interconnected, 

influencing each other.  

Thus even for a constant level of excitation 

energy in the system, the amplitude will tend to 

increase while the frequency will decrease, because 

of the non-linearity in k
3

. 

 

2.  EXPERIMENTAL RESULTS 

 

To analyses the process of generating 

surface waves on the wheel periphery, a number of 

standard grinding wheels were selected. In all cases 

the wheels were balanced before dressing, and to 

study the effect of centrifugal force, certain amounts 

of unbalance were added afterwards. 

Figure 2 (a) shows the amplitude of wheel 

waviness (x) plotted as a function of a function of 

grinding time, for three wheels with different 

unbalance.  

As can be seen from the figure, a build-up 

of waviness starts earlier on wheels with greater 

unbalance 

Fig. 2(b), the frequency of self-excited 

vibrations is plotted for wheels with different 

amounts of unbalance. In case of higher unbalance, 

the frequency of chatter vibrations is smaller because 

of the lower magnitude of k
3
. The influence of wheel 

unbalance can be further studied by comparing the 

excitation energy provided by wheel with various 

magnitudes of unbalance.  

The energy of self-excited vibrations is 

consumed mainly by the process of forming the 

waves on the wheel periphery. Therefore, when the 

amplitude and the frequency of the waviness for 

various magnitudes of wheel unbalance are known 

(as shown in fig. 2, the energy of vibrations can be 

calculated by applying equation (2). The coefficient 

of damping c which appears in this equation may be 

considered constant since the dynamic 

characteristics for the G-W-M system remain 

unchanged. The amplitude of resonance vibrations in 

the equation is assumed to be equal to the amplitude 

of wheel waviness. 

The factor representing the energy of self-

excited vibrations is plotted as a function of grinding 

time, fig. 2(c),. It will be seen that a wheel with 

higher unbalance will accumulate a greater amount 

of excitation energy. 

Finally, special wheels were manufactures 

to study the effect of variation in the wheel hardness. 

Ideally, these wheels should have two different 

hardness sectors located opposite to each other. Since 

such wheels would possess very large unbalance, 

wheels with four different sectors were used instead. 

These wheels had different hardness in the adjacent 

sectors but with the same hardness  

in diametrally opposite sectors.  

It should be mentioned that in the case of 

wheels with non-uniform hardness, no vibrations 

were observed on the wheelhead. 

Hence, that wheel unbalance, as well as a “hard spot” 

on the grinding wheel, may promote chatter 

vibrations. 
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 These vibrations, however, generate waviness on the 

grinding wheel only. The frequency of waviness 

formed on the workpiece correspond to the 

frequency of forced vibrations which are caused by 

wheel unbalance or non-uniform hardness. 

 

 

3. CONCLUSION 
 

 A complete analysis of generations of waviness 

during grinding requires not only the 

measurement of vibrations but also the 

measurement of surface profiles of the 

workpiece and grinding wheel peripheries. 

 To study chatter vibrations it is essential to 

consider the coefficient of wheel contact 

stiffness and the coefficient of grinding wheel 

wear.  

Both these coefficients, being non-linear in 

character, will influence the linearity of the basic 

equation describing the motions in the cases 

when chatter vibrations are being developed. 

 Any relative vibrations in the radial directions 

results in a greater waviness on the wheel as 

compared with that on the workpiece. With 

increase in frequency this effect becomes more 

pronounced.  
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Figure 2(a)  Amplitude of wheel waviness as a 

function of grinding time 
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Figure 2(b)  Frecuency of wheel waviness as a                          

function of grinding time 
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Figure 2(c). Factor representing the energy of self-

excited vibrations  as a function of 

grinding time 
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