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1. INTRODUCTION 
 

The mechanical system of balloon spinning 
analyzed in the present study, is formed of the 
following elements – as represented in the principle 
diagram plotted in Figure 1: 
(1) the reinforced spindle-package assembly, 

rotating around the vertical axis )( represented 

only by circle )( w  of normal cross section of the 

winding package or of bobbin ( Bb ) which contains 

the winding point P, and by the spindle's rod )Sp( , 

solidary with circle )( w ; 

(2) ring )Rn(  solidary with the ringrail segment 

)Rr(  corresponding to a spindle - an element 

which executes an alternative rectilinear translation 

along axis )(  - represented by circle )( T  on 

which the traveler is moving; 

 (3) traveller )Tr( , executing an ellicoidal motion, 

composed of a circular movement on circle ( T ) 

an alternative rectilinear translation , executed 

simultaneously with circle )( T , respectively with 

the ringrail )(Rr . 

 The present study analyzes only the 
spinning sub-system formed of traveller-ring – 
bobbin, point A (of yarn's out put from the feeding 
rollers) and B (the center of yarn’s eye, Ge) 
representing external connection points imposed to 
the yarn portion between the feeding roller and the 
traveller. According to the known methodology of 

mechanics, the effect of yarn's ABC  portion action 

)TrC(   on the above mentioned mechanical 

system is substituted by tension T  in point C - the 

value of which is not known, although its 

orientation is stated by angle 
*  which it forms 

with the vertical; this angle may be measured either 
by direct measurements or it may be calculated. 
 The mechanics problem involves 
settlement - by means of Lagrangean formalism - of 
the motion equations of the mechanical system 
considered. 

2. ELEMENTS OF THE 

MECHANICAL SYSTEM’S 

KINEMATICS 
 
Some kinematic aspects will be first 

discussed. To each of elements (1) and (2), a 
straight triorthogonal Cartesian mark is invariably 

attached (Fig.1). Mark 11111 'z'y'x'O)'R(  has 

its origin in the center of the circle of bobbin 

)B( b ’ s inferior basis, with axis 11 'z'O  oriented 

according to axis )( ; mark 

22222 'z'y'x'O)'R(   has its origin in the center 

of circle )( T , with the 22 'z'O  axis oriented 

according to axis )( , while axis 22 'y'O  

coincides with the ringrail’s longitudinal axis. 
Element (3), the traveller – assimilated to a 

material point has its position determined by its 

cylindrical coordinates in mark C)'R( c  . 

The positions of marks )'R( 1 , )'R( 2 and )'R( c  

are considered versus the straight, steady, 

triothogonal Cartesian mark Oxyz)R(  , the 

axes’ vectors being k,j,i ; 1'OO  , 11 'z'OOz   

( k'k 1  ), 22 'x'O//Ox , ( i'i 2  ), 22 'y'O//Oy , 

( j'j 2  ).) 

Table I lists the position (p.p) and the 
kinematic (p.c.I, p.c.II) parameters characterizing 
the motion of the three elements of the mechanical 

system. RrT  represents the period of ringrail’s 

rectilinear alternative motion, equal to the 
 deposition time of a layer in the bobbin, 

while c  represents traveller’s polar angle in mark 

)'R( c .  

Table I, column 2, shows that the total 
number of time variable position parameters of the 
mechanical system under analysis is 





3

1i

)i(vv 5pp . The occurrence of the 

following equations of geometric connection 
between the 5 parameters: 
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Table 1 

 
 
Figure 1. Principle diagram of the balloon  
spinning mechanical system 
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induces a reduction in the system/s degrees of 

freedom to: 

             3lpp intv                  (2.1) 

 Consequently, the mechanical system’s 

position is determined by 3 Lagrange coordinates, 

represented either by 3 of the 5 variable in time 

parameters or by other, independent ones. Further 

on, the following 3 generalized coordinates will be 

considered: 

)t(q 11  ; )t(zq 22  ; )t(q c3      (2.2) 

with the corresponding generalized velocities: 

            111 )t(q    ;   

          222 v)t(zq   ;  cc3 )t(q    .    (2.3) 

 

 

3. DYNAMIC OF THE MECHANICAL 

SYSTEM 

 

3.1. Calculation of the mechanical system’s 

kinetic energy 

 

 Starting from the motions performed by the 

mechanical system’s elements, i.e.: (1), a rotation 

motion around a steady axis, (2) a rectilinear 

alternative translation along axis )( and (3) an 

ellicoidal motion, the expressions of their energies 

will take the form: 

2
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2

11c J
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1
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where 1J  – the inertia moment of element (1) 

versus axis )( ; 2M  and 3M  - the weight of 

element 2 and 3, respectively. 

The kinetic energy of the mechanical system 

considered, defined by relation 



3

1i

cc i
EE , takes 

– as based on relations 3.1 – the final expression: 

  2

c

2

3

2

232

2

11c rMzMMJ
2

1
E      (3.2) 

 

3.2. Calculation of the mechanical system’s 

generalized forces 

 

Calculation of the generalized forces 

considered only the external active stresses and the 

external dissipative passive ones, as plotted in Fig.2 

(their values being determined previously, by 

means of other investigation methods). 

The external, active stresses which are 

manifested act on element (1) are: 

- element’s weight: 

;kgMgMP 111            (3.3) 

- moment of the action engine torque of the 

mechanical system, transmitted to the spindle 

by a transmission belt; 

.kMMM mmm1
                          (3.4) 

The external passive dissipative stresses are 

repesented by: 

- the friction moment during rotation in the pilot 

bearing )Bp( , which takes, in our case, a 

value of: 

kgMM 1piv  ,                            (3.5) 

  being the coefficient of friction on turning. 

- the friction momentum in the cylindrical bearing 

)Bc(  which, under conditions of the material 

symmetry of element’s revolution around the 

rotation axis, may be considered as constant: 

              kMM ff  ,                                (3.6) 

its module, fM , being possibly approximated with 

the value of its static moment (um). 

 The fpiv0 MMM   sum remains 

approximative, with a constant value of the total 

friction momentum in the two bearings, 

corresponding to the element’s static state, a value 

that may be determined experimentally. 

Consequently, twisting device of the external 

stresses acting upon element (1) takes the form: 

 

 
 

Figure 2. Image of the active external and passive 

dissipative stress acting on the mechanical system 
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(3.7) 

On considering relations 0V
1G  ; k11   , the 

following conditions result: 



A new mathematical model of the dynamic behaviour of the mechanical system of balloon… 

 

0
v

F
z

v
F

v
F

C

G

1

2

G

1

1

G

1
111 















 
; 

(3.8) 

1

1

1
1 MM 









; 0M

z
M

C

1
1

2

1
1 















. 

The external active stresses acting upon element (2) 

are: 

- element’s weight: 

;kgMgMP 222                         (3.9) 

- the driving force putting the assembly into 

motion: 

kFF mm  .                                    (3.10) 

The external passive dissipative forces acting upon 

element (2) are represented by the friction forces to 

sliding in the translation couples, that permit 

railring’s movement. The resulting unique force, 

2f
F , has its support represented by axis 22 'z'O , its 

module 0F , determined experimentally for the 

static case is considered constant and is 

permanently oriented counter-clockwisely to the 

direction of velocity kzv 2G2
 ; consequently, this 

force will be expressed as: 

 

 

 

            kF
~

kFzsignF 002f2
          (3.11) 

 Thus, the wrench in pole 2G , of all external forces 

that act upon element (2), will take the form: 
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              (3.12) 

 On considering relations kzv 2G2
 ; 02  , the 

following conditions will result: 
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. (3.13) 

 Element (3), the traveller, is driven by two external 

forces: 

- weight 

;kgMgMP 333             (3.14) 

- tension 

 kcosjsinsinicossinTT
*

c

*

c

*    .15) 

in the hypothesis of the plane shape of the yarn 

portion forming the balloon, the position situated in 

the plane determined by the symmetry axis of 

ring’s revolution and also by the traveller. 

            The analytical expression in the steady mark 

of the resultant of the external forces acting upon 

the traveller take the form: 

 
  kgMcosT
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                                                                  (3.16) 

On considering relation 3v  from table I, column 4, 

the following conditions result: 

0
v

F
1

3
3 





; gMcosTF

z

v
F 3

*

z3

2

3
3 






; 

0
v

F
C

3
3 


.                   (3.17) 

Relations (3.8), (3.13) and (3.17) lead is the 

following final expressions of the three generalized 

forces: 
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;  (3.18) 
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3.3. Lagrange equations of species II, 

corresponding to the mechanical system 

 

 For completing the system of Lagrange 

equations that describe the dynamic behaviour of 

the mechanical system: 

          k

kk

c Q
q

E

q
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dt
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 (k=1,2,3)    (3.19) 

the partial derivatives of kinetic energy (3.2) are 

first calculated, versus the generalized coordinates 

and generalized velocities: 
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On considering conditions (3.20), system 

(3.19) will be reduced to a system of the form: 
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(k=1,2,3)              (3.21) 

On introducing expressions (3.18) and (3.20) in 

(3.21), the following system of Lagrange equations 

of species II will be obtained: 
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                                                                  (3.22) 

The previous system of ordinary differential second 

order equations, the following initial conditions will 

be associated for functions )t(1 , )t(z2 and 

)t(c . 

- position conditions: 

    
0

11 )0(   ; 
0

22 z)0(z  ; 
0

cc )0(   ;   (3.23) 

- velocity conditions 

    
0

11 )0(   ; 
0

22 v)0(z  ; 
0

cc )0(   .   

(3.24) 

 

 

4. CONCLUSIONS 
 

The above presented mathematic model, 

represented by system (3.22) of differential 

equations and also by sets of initial and conditions, 

permits the resolution of two types of problems of 

the dynamics characterizing the spinning 

mechanism on the ring spinning machine: 

a) The fundamental-type problem, which studies 

the operation of the spinning system in a transitory 

regime, such as the one corresponding to machine's 

starting phase - a case in which the initial 

conditions of speed take the forms 

         ;0;0v;0
o

c

o

2

o

1                      (4.1) 

which indicate the normal position of the system's 

elements - or of the one corresponding to    

machine's stop phase, when the constants 

expressing the initial speeds take the values 

         ;;vv; c

o

c2

o

21

o

1                 (4.2) 

corresponding to the operation of the ring-spinning 

machine in a stationary regime; 

b) The direct-type problem, corresponding 

to machine's operation in a permanent regime, 

equations (3.22) permitting the establishment of the 

conditions that should be satisfied by the stresses - 

the motor one especially - that act on the system, so 

that the operation of yarn's torsion should occur as a 

stationary process. 

A necessary condition for a normal operation of the 

mechanical spinning system is that element (1), the 

spindle-bobbin assembly, should execute an 

uniform rotation. Once this condition met, there 

results that: 

              01  ; .const01      (4.3) 

Under such conditions, equation Lagrange provides 

the dependence law of the twisting moment on the 

angular speed and possibly, that of the rotation 

angle, which might permit identification of the 

mechanical characteristic of the system’s driving 

engine. 

Also, the same equation may provide the data 

necessary for the automatic regulation of the 

driving engine’s rotative speed. 
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